Mild Alkalization Acutely Triggers the Warburg Effect by Enhancing Hexokinase Activity via Voltage-Dependent Anion Channel Binding

نویسندگان

  • Cung Hoa Thien Quach
  • Kyung-Ho Jung
  • Jin Hee Lee
  • Jin Won Park
  • Seung Hwan Moon
  • Young Seok Cho
  • Yearn Seong Choe
  • Kyung-Han Lee
چکیده

To fully understand the glycolytic behavior of cancer cells, it is important to recognize how it is linked to pH dynamics. Here, we evaluated the acute effects of mild acidification and alkalization on cancer cell glucose uptake and glycolytic flux and investigated the role of hexokinase (HK). Cancer cells exposed to buffers with graded pH were measured for 18F-fluorodeoxyglucose (FDG) uptake, lactate production and HK activity. Subcellular localization of HK protein was assessed by western blots and confocal microscopy. The interior of T47D breast cancer cells was mildly alkalized to pH 7.5 by a buffer pH of 7.8, and this was accompanied by rapid increases of FDG uptake and lactate extrusion. This shift toward glycolytic flux led to the prompt recovery of a reversed pH gradient. In contrast, mild acidification rapidly reduced cellular FDG uptake and lactate production. Mild acidification decreased and mild alkalization increased mitochondrial HK translocation and enzyme activity. Cells transfected with specific siRNA against HK-1, HK-2 and voltage-dependent anion channel (VDAC)1 displayed significant attenuation of pH-induced changes in FDG uptake. Confocal microscopy showed increased co-localization of HK-1 and HK-2 with VDAC1 by alkaline treatment. In isolated mitochondria, acidic pH increased and alkaline pH decreased release of free HK-1 and HK-2 from the mitochondrial pellet into the supernatant. Furthermore, experiments using purified proteins showed that alkaline pH promoted co-immunoprecipitation of HK with VDAC protein. These findings demonstrate that mild alkalization is sufficient to acutely trigger cancer cell glycolytic flux through enhanced activity of HK by promoting its mitochondrial translocation and VDAC binding. This process might serve as a mechanism through which cancer cells trigger the Warburg effect to maintain a dysregulated pH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fenofibrate Suppresses Oral Tumorigenesis via Reprogramming Metabolic Processes: Potential Drug Repurposing for Oral Cancer

One anticancer strategy suggests targeting mitochondrial metabolism to trigger cell death through slowing down energy production from the Warburg effect. Fenofibrate is a clinical lipid-lowering agent and an effective anticancer drug. In the present study, we demonstrate that fenofibrate provided novel mechanisms for delaying oral tumor development via the reprogramming of metabolic processes. ...

متن کامل

Plasminogen structural domains exhibit different functions when associated with cell surface GRP78 or the voltage-dependent anion channel.

Both the voltage-dependent anion channel and the glucose-regulated protein 78 have been identified as plasminogen kringle 5 receptors on endothelial cells. In this study, we demonstrate that kringle 5 binds to a region localized in the N-terminal domain of the glucose-regulated protein 78, whereas microplasminogen does so through the C-terminal domain of the glucose-regulated protein 78. Both p...

متن کامل

Hexokinase II Detachment from Mitochondria Triggers Apoptosis through the Permeability Transition Pore Independent of Voltage-Dependent Anion Channels

Type II hexokinase is overexpressed in most neoplastic cells, and it mainly localizes on the outer mitochondrial membrane. Hexokinase II dissociation from mitochondria triggers apoptosis. The prevailing model postulates that hexokinase II release from its mitochondrial interactor, the voltage-dependent anion channel, prompts outer mitochondrial membrane permeabilization and the ensuing release ...

متن کامل

Voltage-dependent anion channel (VDAC) as mitochondrial governator--thinking outside the box.

Despite a detailed understanding of their metabolism, mitochondria often behave anomalously. In particular, global suppression of mitochondrial metabolism and metabolite exchange occurs in apoptosis, ischemia and anoxia, cytopathic hypoxia of sepsis and multiple organ failure, alcoholic liver disease, aerobic glycolysis in cancer cells (Warburg effect) and unstimulated pancreatic beta cells. He...

متن کامل

Cyclin D1 inhibits mitochondrial activity in B cells.

Cyclin D1 is a cell cycle regulatory protein that acts at the G1-S transition, following its binding to and activation by the cyclin-dependent kinases 4 or 6. Cyclin D1 is absent from the entire B-cell lineage but is present in a large percentage of 2 types of malignant B-cell hemopathy--mantle cell lymphoma and multiple myeloma--suggesting a major role of this protein in the malignancy process...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016